Economics of Information

1. Economics of information

2. Moral hazard

•How should the contract be designed so that A's interests are aligned with P's?

3. Adverse selection

•How should the contract be designed so that A reveals her type?

1. Teoria da agência – Modelos de sinalização

Modelo de sinalização

- Há assimetria de informação antes da relação se iniciar
- Aceitação depende das oportunidades alternativas do agente
- O delegante, que é quem oferece contrato, é que tem informação privada
- Será que delegante ganha em «revelar» a sua informação privada? Ou será que
- é preferível não revelar informação através do contrato?

The game in moral hazard problems

4. Moral hazard with a risk neutral agent – exemples

Effort level	Sucess $x = 400$	No sucess $x = -100$	Gross Exp. Profit
<i>e</i> = 2	3/4	1/4	275
e = 1	1/2	1/2	150

Result of the project

 $U(w,e) = w - 10 e^2$ A's reservation utility is 15

If *e* is verifiable

• In this case, w can depend on e

P knows that A only accepts the contract if, by choosing the optimal *e*, he obtains:

If *e* is verifiable

$$U(w, e) = w - 10e^{2} \ge 15$$

$$e = 1$$

$$w = 25$$

$$e = 2$$

$$w = 55$$

Optimal contract for P

- 1. Optimal contract (minimum cost) to induce effort
- 2. Effort level that maximizes profit

Wage cannot depend on *e*, but it can depend on *x* (why?) If x = -100, w = w. If x = 400, $w = \overline{w}$

Optimal contract to induce e = 1 \longrightarrow Constant wage w = w = 25

Optimal contract to induce e = 2 —

Constant wage will not work. Why?

$$\underbrace{\frac{3}{4}\overline{w} + \frac{1}{4}\underline{w} - 10 \times 2^{2}}_{\text{Exp. utility with } e = 2} \geq \underbrace{\frac{1}{2}\overline{w} + \frac{1}{2}\underline{w} - 10 \times 1^{2}}_{\text{Exp. utility with } e = 1}$$
IC constraint

Optimal contract to induce e = 2

If e = 2 then w = 55; otherwise w = 0 Optimal contract to induce e = 1

Constant wage w = 25

Optimal effort level?

 $E(\Pi | e = 2) = 275 - 55 = 220$ $E(\Pi | e = 1) = 150 - 25 = 125$

P offers contrat w = 55 if e = 2; but w = 0 se e = 1. A accepts and chooses e = 2. Receives w = 55.

Optimal contract to induce e = 2

$$\underbrace{\frac{3}{4}\overline{w} + \frac{1}{4}\underline{w} - 10 \times 2^2}_{4} \geq \underbrace{\frac{1}{2}\overline{w} + \frac{1}{2}\underline{w} - 10 \times 1^2}_{10 \times 1}$$
 IC constraint

Exp. utility with e = 2 Exp. utility with e = 1

Moral hazard with a risk neutral agent – important intuitions

- Constant wage to give incentives for low effort.
- Wage must depend on result to to give incentives for high effort.
- Expected wage to giv incentives for high effort is higher to compensate for the additional disutility of effort.
- Optimal level of effort depends on the comparison of marginal benefits of effort (hogher gross expected profit) with marginal cost of effort (marginal desutility of effort)
- Assimetry of information does not have any costs

5. Moral hazard with a risk averse agent – exemple

Effort level	Sucess $x = 400$	No sucess $x = -100$	Gross exp. profit
<i>e</i> = 2	3/4	1/4	275
e = 1	1/2	1/2	150

Result of the project

$$U(w,e) = 5\sqrt{w} - 5e^2$$

Reservation utility= 25

If *e* is verifiable

Optimal contrat w = 81 if e = 2; but w = 0 if e = 1.

Optimal contract to induce e = 1 \longrightarrow Constant wage w = w = 36

Optimal contract to induce e = 2

$$\begin{cases} \frac{15}{4}\sqrt{\overline{w}} + \frac{5}{4}\sqrt{\underline{w}} - 5 \times 2^2 \ge \frac{5}{2}\sqrt{\overline{w}} + \frac{5}{2}\sqrt{\underline{w}} - 5 \times 1^2 \\ \frac{15}{4}\sqrt{\overline{w}} + \frac{5}{4}\sqrt{\underline{w}} - 5 \times 2^2 \ge 25 \\ & & & & & \\ \hline \mathbf{IC \ constraint} \\ \hline \mathbf{IR \ constraint} \\ & & & & \\ \hline \mathbf{W} = 144 \\ \frac{w}{2} = 0 \\ & & & & \\ \hline \mathbf{E(w)} = 108 \\ \underline{w} = 144 \\ \underline{w} = 0 \\ & & & \\ \hline \mathbf{W} = 144 \\ \underline{w} = 0 \\ & & & \\ \hline \mathbf{W} = 108 \\ \mathbf{W} = 108 \\ \hline \mathbf{W} = 108 \\ \mathbf{W}$$

With risk aversion, asymmetric information has a social cost.

Moral hazard with risk aversion –important intuitions

- Tradeoff between **risk sharing** and **incentives**.
- Optimal level of effort depends on how marginal benefits of effort compare with the marginal costs of effort (marginal desutility of effort + risk premium).
- Assimetry of information has costs.
- Optimal level of effort under asymmetric information may be lower than when *e* is observable.